If it's not what You are looking for type in the equation solver your own equation and let us solve it.
38x^2+x-15=0
a = 38; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·38·(-15)
Δ = 2281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2281}}{2*38}=\frac{-1-\sqrt{2281}}{76} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2281}}{2*38}=\frac{-1+\sqrt{2281}}{76} $
| 5x+5=3x-(8-x) | | S=x(40-2x)+x(40-2x)+x(80-2x)+x(80-2x)+(80-2x)(40-2x) | | (r+5)(2r+7)(r-9)=0 | | 6.5=8.3-0.6x | | 4(x-4)+18=3(x+4) | | 3-9c=35 | | 2.9=4.1-0.2x | | 2.1+10m=8.35 | | Y^2+x+16Y+63=0 | | 63=6.50p+17 | | -6=9+u | | 4-2r=12 | | (5/u^2+u-6)=2-(u-3/u-2) | | 2u^2-23=0 | | 4(y-6)=7 | | 2p-36=6-20+15 | | 3w-2-55=180 | | 2x-4-5x+20=20 | | 11=-7a+2a | | 5x+4-3=-15 | | 5y+12y+9=4y+42 | | N+n-17=15 | | 186696=625(((1+(x/12))^(17*12)-1)/(x/12)) | | 5(x+13)=9x+4 | | 4-y/11=3 | | 4/5x-16=-4 | | 2x+3(3x+14)=9 | | 3{(5x-8)/6+7}-3=18 | | 10=8y-2y-2 | | 3/5x-2/5=-3/5x+58/3 | | x2+4x=7x | | 5+n+8=-42 |